The Pedagogy of Low-Latency Distributed Interactive Multimedia Collaboration Systems

Using Video Games to Motivate Computer Science

Dylan McNamee eXaNetworks, Inc.

"Video Games"

- Are dirty words in academia
- Yet they are
 - Ubiquitous *really*!
 - A huge industry
 - Worming their way into curricula
- Euphemisms abound
 - Interactive multimedia
 - Low-Latency Distributed Interactive Multimedia Collaboration Systems

- Using euphemisms to "cloak" video games is missing an opportunity!
- A CS curriculum that includes video games is
 - Relevant
 - Exciting
 - Challenging
- Isn't that exactly what we need, especially at the intro to a CS program?

A Humble Proposition

- It could be "a good thing" to introduce a touchstone course on video games into a CS curriculum
- Touchstone: A survey course with a theme
- A good thing:
 - good for the CS department
 - help increase enrollment and diversity
 - good for the students
 - tie core CS concepts to concrete and exciting applications

"Are You Nuts?"

- Video Games should be taken seriously
 - \$17 billion / year business
 - This is 2x annual movie theater sales
 - Pervading our culture
 - Economists, social scientists, ... are seriously studying video games

"Are You Nuts?" ...

- Many games are objectionable
 - The controversy is somewhat justified
 - Even these games are fascinating inside
- We are in a *Golden* Age in terms of Computer Science inside video games
 - Ten years ago, it was all assembly code and "hitting the hardware."

Video Games use an amazing breadth of Computer Science

- Graphics, of course
- Algorithms and complexity
- Data structures
- Languages, compilers and interpreters
- Networking
- Architecture
- Software engineering
- AI, UI, ... (you get the idea)

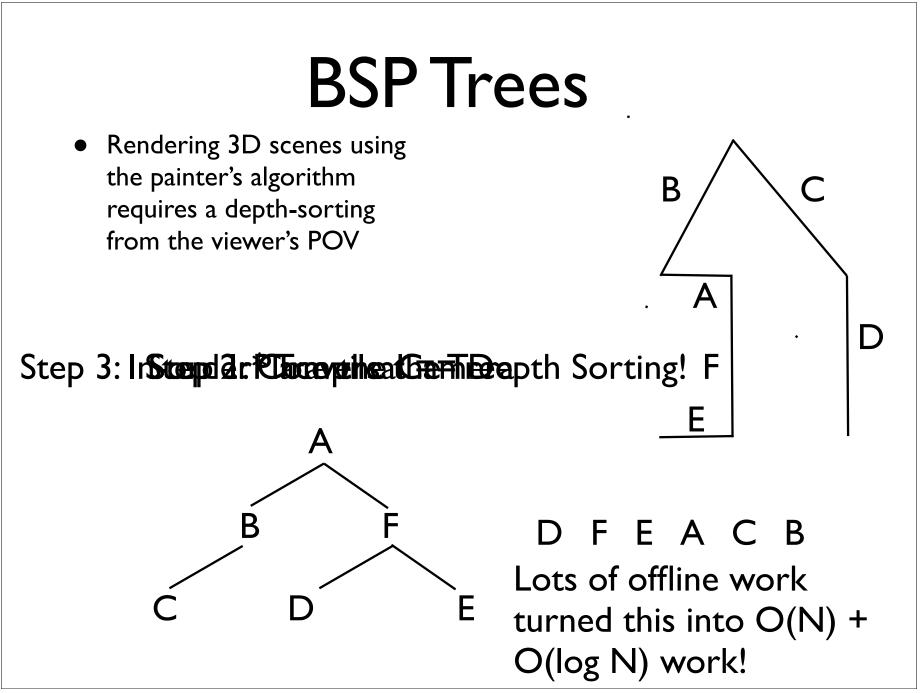
Complexity and Video Game Performance

- Games strive for 30-60 frames per second
- Most games have many elements that need to be searched/sorted, etc., each frame
- Given different algorithmcomplexity, how much work can be done per frame?

Complexity

O(n)

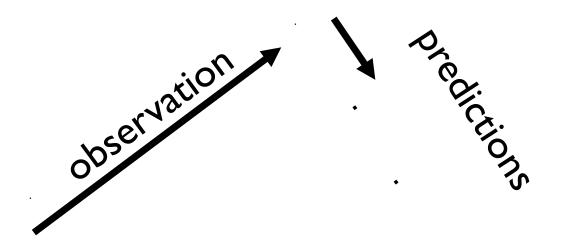
O(n²)


Impact of Faster Hardware

 Students have heard Problem size ...with I0x Complexity of Moore's law...but faster HW per frame probably don't get it ~infinite¹⁰ O(log n) ~infinite • Many people assume algorithmic 2,000,000 O(n)20,000,000 complexity doesn't matter when $O(n \log n)$ 118,650 1,003,201 machines are $\sim 10x$ faster every 3-4 $O(n^2)$ 1,414 4,472 years $O(2^n)$ This gets their 21 24

attention!

Data Structures

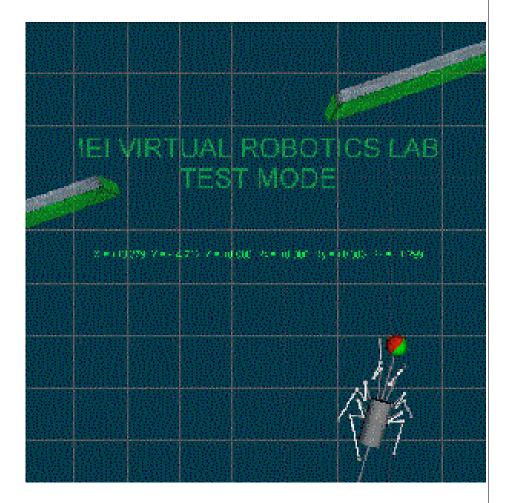

- You name them, games use them
 - Linked lists
 - Hash tables
 - Trees (very interesting ones!)
 - Graphs
 - Arrays

Networking

- Getting networked games working at all is a feat!
- Clients communicate via server with star topology
- Clients interact with each other using projectiles
- Network latencies can be high and/or variable
- Common technique: client caching

Client-Cached Motion Vectors

Problem: Cache Consistency


- Sharp turns or changes in velocity invalidate cached state
- Client collision detections are not final
- Server arbitrates disputes adaptively
 - Field-weapons: slow, visible, broad damage
 - Spot weapons: fast, invisible, accurate
- Dynamic, adaptive relaxed consistency policy (!)

Architecture

- Game hardware is a great demonstration platform for computer architecture:
 - Classic ALU, Cache, Registers, Busses, ...
 - Parallel processing
 - SIMD in graphics cards
 - MIMD on motherboards
- Finding and fixing performance bottlenecks is a true systems architecture challenge

Artificial Intelligence

- Video games are an ideal testbed for AI
 - Complex virtual environments are a fantastic space for planning
 - "Virtual robotics"
- Similarly, games' flora and fauna can be made up of agents with emergent behavior

And so on...

- O O Programming
 - Simula was invented for simulation
- Software patterns
 - Model, view, controller
 - Mediators, observers, ... most apply!
- Operating systems
- Real time systems
- Databases

Course Suggestions

- Don't cover all of this cherry pick your favorites
- Project platforms
 - Java and Smalltalk both would work fine
 - StarLOGO is an interesting alternative
- Avoid proprietary high-level toolkits

A Taxonomy of Video Games

b The Classic [Crawford, 1980]:

- "genre"
 - maze games
 - shoot-em-ups
 - puzzles
 - simulations
- **b** Worked for a while, but is now broken
 - All 3-D games are simulations, most are Duzzles. many involve shooting in mazes

An Implementationbased Taxonomy

 Measure attributes of "model" and "view" orthogonally, fit games to matrix:

	Text	2D	2.5D	3D		
ID	Books	Cartoons, _. Movies		Plays, ''linear games''		
2D	Adventure, "goto" books	PacMan, SimCity		Myst, Riven, Mazewar		
2.5D			SimCity2K, Zaxxon	Doom		
3D				Quake Flight Sims		

\ /	•	
V	iew	
•		

FAQ's

- Isn't this a bit "vocational"?
 - I've been assured by members of the industry that all they want is smart, well-rounded students
- Isn't this a fad?
 - Maybe, but this fad is about 30 years old
- What about capstone courses?
 - They're a great complement a touchstone course should draw students in earlier

More FAQ's

- Won't this only attract boys?
 - It's true that games have a gender problem
 - My hope is that drawing more women into CS & games will break that cycle, and result in better games!

References, Resources

- Books
 - Game Coding Complete, Mike McShaffry
 - Rules of Play: Game Design Fundamentals, Salen & Zimmerman
 - Physics for Game Developers, David Bourg
 - Developing Games in Java, David Brackeen
- Web sites
 - www.gamasutra.com
 - ludology.org
 - www.mecodegoodsomeday.com/games

Languages, Compilers and Interpreters

- Game applications are written in a language
 - Language choice should depend on libraries and abstractions, not absolute performance
- Many games use embedded languages for high-level scripting / level design